Wheel and star-critical Ramsey numbers for quadrilateral

نویسندگان

  • Yali Wu
  • Yongqi Sun
  • Stanislaw P. Radziszowski
چکیده

The star-critical Ramsey number r∗(H1,H2) is the smallest integer k such that every red/blue coloring of the edges of Kn −K1,n−k−1 contains either a red copy of H1 or a blue copy of H2, where n is the graph Ramsey number R(H1,H2). We study the cases of r∗(C4, Cn) and R(C4,Wn). In particular, we prove that r∗(C4, Cn) = 5 for all n > 4, obtain a general characterization of Ramsey-critical (C4,Wn)-graphs, and establish the exact values of R(C4,Wn) for 9 cases of n between 18 and 44.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exact Formula for all Star-Kipas Ramsey Numbers

Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or G contains a G2. A complete bipartite graph K1,n is called a star. The kipas ̂ Kn is the graph obtained from a path of order n by adding a new vertex and joining it to all the vertices of the path. Alternatively, a kipas is a wheel with one edg...

متن کامل

The Ramsey numbers of large trees versus wheels

For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.

متن کامل

Ramsey numbers of stars versus wheels of similar sizes

We study the Ramsey number R(Wm, Sn) for a star Sn on n vertices and a wheel Wm on m + 1 vertices. We show that the Ramsey number R(Wm, Sn)= 3n− 2 for n=m,m+ 1, and m+ 2, where m 7 and odd. In addition, we give the following lower bound for R(Wm, Sn) where m is even: R(Wm, Sn) 2n+ 1 for all n m 6. © 2004 Elsevier B.V. All rights reserved.

متن کامل

A remark on star-C4 and wheel-C4 Ramsey numbers

Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer N such that, for any graph G of order N , either G1 is a subgraph of G, or G2 is a subgraph of the complement of G. Let Cn denote a cycle of order n, Wn a wheel of order n + 1 and Sn a star of order n. In this paper, it is shown that R(Wn, C4) = R(Sn+1, C4) for n ≥ 6. Based on this result and Parsons’ results on R(S...

متن کامل

On the Ramsey number of the quadrilateral versus the book and the wheel

Let G and H be graphs. The Ramsey number R(G, H) is the least integer such that for every graph F of order R(G, H), either F contains G or F contains H . Let Bn and Wn denote the book graph K2 +Kn and the wheel graph K1 + Cn−1, respectively. In 1978, Faudree, Rousseau and Sheehan computed R(C4, Bn) for n ≤ 8. In this paper, we compute R(C4, Bn) for 8 ≤ n ≤ 12 and R(C4, Wn) for 4 ≤ n ≤ 13. In pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 186  شماره 

صفحات  -

تاریخ انتشار 2015