Wheel and star-critical Ramsey numbers for quadrilateral
نویسندگان
چکیده
The star-critical Ramsey number r∗(H1,H2) is the smallest integer k such that every red/blue coloring of the edges of Kn −K1,n−k−1 contains either a red copy of H1 or a blue copy of H2, where n is the graph Ramsey number R(H1,H2). We study the cases of r∗(C4, Cn) and R(C4,Wn). In particular, we prove that r∗(C4, Cn) = 5 for all n > 4, obtain a general characterization of Ramsey-critical (C4,Wn)-graphs, and establish the exact values of R(C4,Wn) for 9 cases of n between 18 and 44.
منابع مشابه
An Exact Formula for all Star-Kipas Ramsey Numbers
Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or G contains a G2. A complete bipartite graph K1,n is called a star. The kipas ̂ Kn is the graph obtained from a path of order n by adding a new vertex and joining it to all the vertices of the path. Alternatively, a kipas is a wheel with one edg...
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملRamsey numbers of stars versus wheels of similar sizes
We study the Ramsey number R(Wm, Sn) for a star Sn on n vertices and a wheel Wm on m + 1 vertices. We show that the Ramsey number R(Wm, Sn)= 3n− 2 for n=m,m+ 1, and m+ 2, where m 7 and odd. In addition, we give the following lower bound for R(Wm, Sn) where m is even: R(Wm, Sn) 2n+ 1 for all n m 6. © 2004 Elsevier B.V. All rights reserved.
متن کاملA remark on star-C4 and wheel-C4 Ramsey numbers
Given two graphs G1 and G2, the Ramsey number R(G1, G2) is the smallest integer N such that, for any graph G of order N , either G1 is a subgraph of G, or G2 is a subgraph of the complement of G. Let Cn denote a cycle of order n, Wn a wheel of order n + 1 and Sn a star of order n. In this paper, it is shown that R(Wn, C4) = R(Sn+1, C4) for n ≥ 6. Based on this result and Parsons’ results on R(S...
متن کاملOn the Ramsey number of the quadrilateral versus the book and the wheel
Let G and H be graphs. The Ramsey number R(G, H) is the least integer such that for every graph F of order R(G, H), either F contains G or F contains H . Let Bn and Wn denote the book graph K2 +Kn and the wheel graph K1 + Cn−1, respectively. In 1978, Faudree, Rousseau and Sheehan computed R(C4, Bn) for n ≤ 8. In this paper, we compute R(C4, Bn) for 8 ≤ n ≤ 12 and R(C4, Wn) for 4 ≤ n ≤ 13. In pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Applied Mathematics
دوره 186 شماره
صفحات -
تاریخ انتشار 2015